DDoS attacks

be prepared for Survival

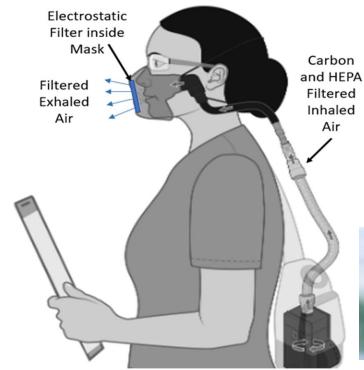
Author: Uncle Nai

Version: 1.1

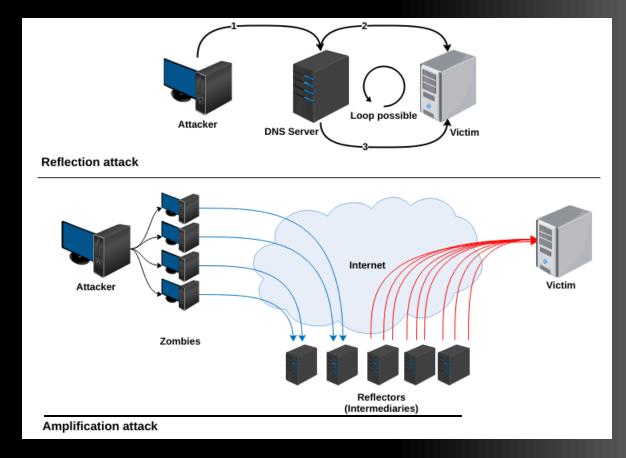
Last Update: October 22, 2025

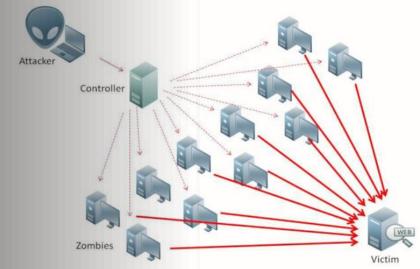
MYANMAR NETWORK OPERATORS GROUP

Feel free to send feedback and your valuable comments to event@mm-ix.net



Real world DoS examples only in Myanmar version(s) 2005-2010; 2015+...

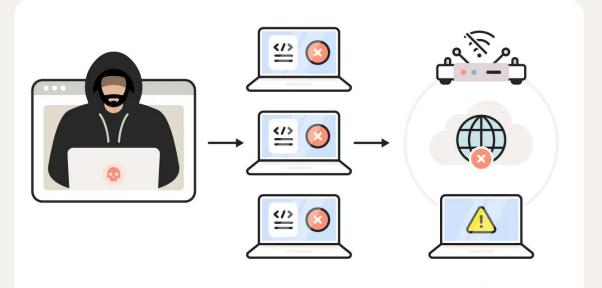



DoS and DDoS Threats

What? WHY? How? History

Options to defend

- ▶ What is it?
- ▶ WHY? (motives!!).. \$%^%^ @#\$, etc....
- ► HOW ??
- Historical DDoS events (2001 to 2025)
 in Myanmar & all over the world
 [firewall or anti-DDoS solutions will work ??]
- How is it handled, mitigated in best practices !! /unplug, power off, save electricity?/
- ► How is it healed and dealt with global community support ??? / team C- - - /



wlPlp1s0 / hourly											
hour	rx		tx		l	total			avg. 1	cate	
2025-10-17		'									
20:00	30.39 MiB		27.74	MiB		58.13 M:	iВ		135.45	kbit	/s
21:00	32.36 MiB		26.95	MiB		59.31 M:	iВ		138.20	kbit	/s
22:00	30.20 MiB		26.89	MiB		57.10 M:	iВ		133.04	kbit	/s
23:00			24.81	MiB		51.92 M:	iВ		120.98	kbit	/s
2025-10-19											
15:00	4.11 MiB		3.70	MiB		7.81 M:	iВ		18.20	kbit	/s
16:00	28.21 MiB		25.23	MiB		53.44 M:	iВ		124.53	kbit	/s
17:00	47.62 MiB		25.93	MiB		73.55 M:	iВ		171.38	kbit	/s
18:00	73.41 MiB		104.43	MiB		177.84 M:	iВ		414.39	kbit	/s
19:00	33.07 MiB		28.75	MiB		61.82 M:	iВ		144.05	kbit	/s
20:00	34.03 MiB		34.50	MiB		68.53 M:	iВ		159.69	kbit	/s
21:00	28.77 MiB		32.41	MiB		61.18 M:	iВ		142.55	kbit	/s
22:00	27.88 MiB		32.61	MiB		60.49 M:	iВ		140.95	kbit	/s
23:00	26.34 MiB		33.99	MiB		60.32 M:	iВ		140.56	kbit	/s
2025-10-20											
00:00	23.16 MiB		26.40	MiB		49.56 M:	iВ		115.48	kbit	/s
01:00	462.11 MiB		46.08	MiB		508.19 M:	iВ		1.18	Mbit	/s
02:00	13.38 GiB		621.06	MiB		13.99 G:	iВ		33.38	Mbit	/s
03:00	6.39 GiB		337.05	MiB		6.72 G:	iВ		16.03	Mbit	/s
04:00	22.49 MiB		23.27	MiB		45.75 M:	iВ		106.62	kbit	/s
05:00	22.21 MiB		23.35	MiB		45.55 M:	iВ		106.15	kbit	/s
06:00	22.35 MiB		22.93	MiB		45.28 M:	iВ		105.51	kbit	/s
07:00	37.12 MiB		24.06	MiB		61.18 M:	iВ		142.56	kbit	/s
08:00	32.82 MiB		24.15	MiB		56.96 M:	iВ		132.73	kbit	/s
09:00	38.37 MiB		25.62	MiB		63.98 M:	iВ		149.09	kbit	/s
10:00	21.69 MiB		19.81	MiB		41.51 M	iВ		128.96	kbit	/s
day	rv I		tv		Ī	tota	1		ء ا	wa	ra

day	rx	tx		avg. rate
2025-10-09	377.78 MiB	190.94 MiB		55.22 kbit
2025-10-10	989.89 MiB	425.18 MiB	1.18 GiB	137.39 kbit
2025-10-11	776.47 MiB	430.67 MiB		117.20 kbit
2025-10-12	702.16 MiB	388.67 MiB		105.91 kbit
2025-10-13	524.47 MiB	751.27 MiB		123.86 kbit
2025-10-14	123.47 MiB	373.68 MiB		48.27 kbit
2025-10-15	6.80 GiB	656.29 MiB		739.71 kbit
2025-10-16	786.14 MiB	773.40 MiB	1.52 GiB	151.42 kbit
2025-10-17	895.48 MiB	625.26 MiB	1.49 GiB	147.65 kbit
2025-10-19	303.43 MiB	321.55 MiB	624.98 MiB	60.68 kbit
2025-10-20	20.47 GiB	1.20 GiB	21.67 GiB	4.40 Mbit
estimated	+ 41.82 GiB L	2.44 GiB	++- 44.26 GiB	

DDoS Attacks Explained

DDoS attacks occur when a hacker uses a zombie network to flood a website/server with traffic or requests until it crashes.

Attacker

A hacker infects devices to make botnets, forming a **zombie network**.

Zombie Network

The zombie network floods a targeted website or server with traffic.

Targeted Website/Server

The targeted website or server crashes, disconnecting from the internet.

plz refer to AI/GPTs & GOOGLE for more, please.

- DDoS Evolution Timeline (2001–2025)
- Attack Motivations (crimeware, hacktivism,
- geopolitics, extortion, gaming, Al abuse, ...)
- DDoS Economics: booter-as-a-service & darknet markets
- Attack Statistics 2024–2025 (Tbps peaks, top vectors, regional trends)
- Case Study: Real 2025 multi-vector attack on a global backbone
- Defense frameworks & coordination (NOC–SOC)
- Operational metrics, KPIs, and future outlook

DDoS, or distributed denial of service attack, is What is a DDoS attack a malware (malicious software) attack Bot herder Control server A malicious software • As the number of pings are far beyond the first creates a network server's capacity, the server crashes and denies of bots - called botnets service to its consumers It then uses all the DDoS attacks knock off web services and botnets to ping a network connectivity by bombarding servers single server at the with millions of packets, which in turn overload Compromised server same time the server's target, making them defunct

TYPES OF DDoS ATTACKS

Volume-Based Attacks Floods network with too much data

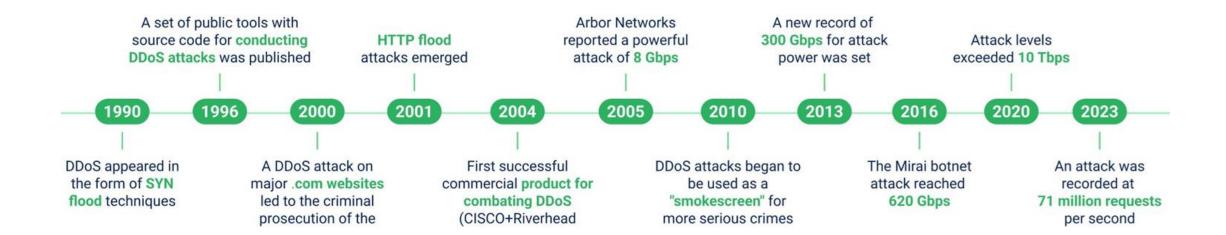
Protocol Attacks
Exploit weaknesses in network protocols

Application Layer AttacksMake target applications
crash or sluggish.

Distributed Denial-of-Service (DDoS) Attacks

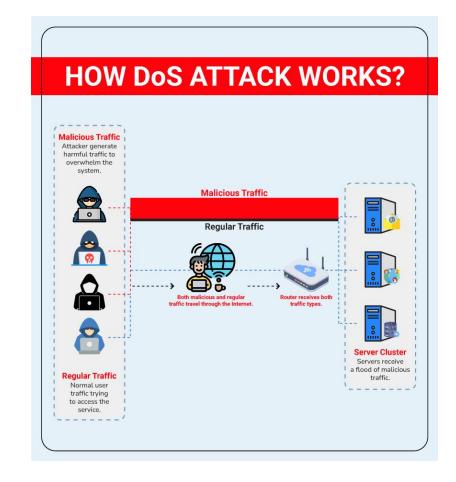
Uses multiple systems to attack a single target.

Resource Exhaustion
Repeatedly request access to overload application.



Reflective Attacks
Sending requests to 3rd-party
servers from victim's IP address.

Denial of Service (**DoS**)

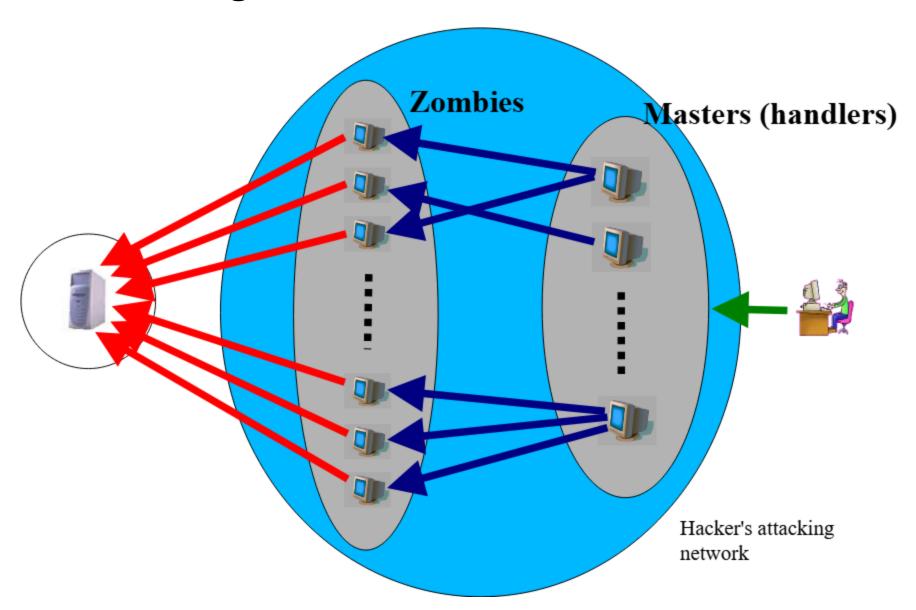

- → 1974: The first Denial of Service (DoS) attack
 - executed by a 13-year-old, David Dennis, just crashed 31 computer terminals on the University of Illinois's PLATO system.
- → 1996: The first known large-scale **Distributed** Denial of Service (**DDoS**)
 - internet service provider Panix ISP was overwhelmed by a SYN flood attack, taking several days to recover.

Threats and Protections

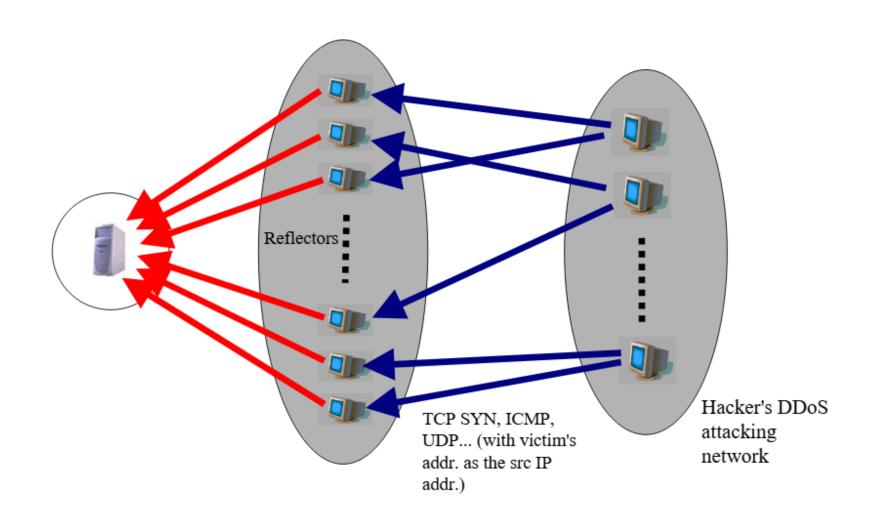
- > DDoS definition and its attacking architectures
- > DDoS classification
- ➤ Defense mechanism classification
- ➤ Reactive VS. Proactive
- ➤ Classification by defending front-line
- ➤ SOS a case study

DDoS; What is it?

➤ No definite ready-to-go definition available yet for attackers PoV


> Characteristics

- Multiple attackers vs. single victim / org
- to cause denial of service to legitimate uman
- ➤ Two major attacking architecture
 - Direct attack
 - Reflector attack



Attacking Architecture - Direct Attack

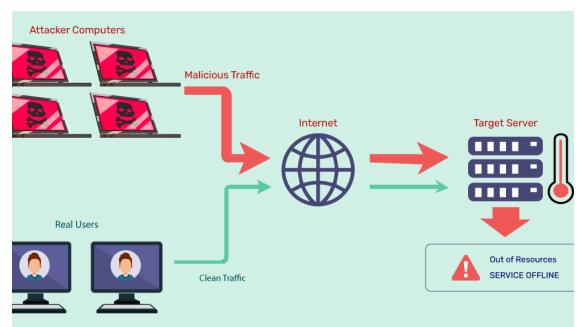
Attacking Architecture – Reflector Attack

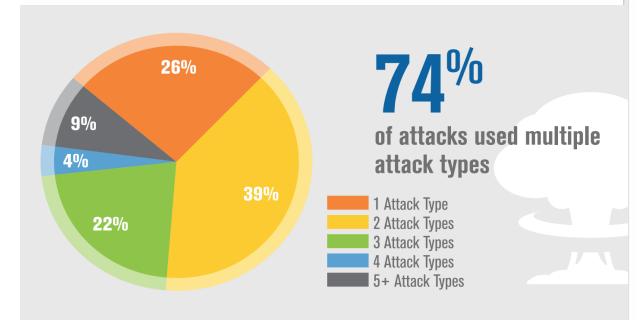
DDoS Evolution Timeline (2001–2025)

- → 2001–2010: Simple **SYN/UDP floods**, early IRC botnets
- → 2010–2016: Mirai **IoT** exploitation, booter markets rise
- → 2017–2020: Multi-vector amplification attacks
- → 2021–2025: Al-assisted, short high-Tbps bursts, 5G networks/high speed advantages

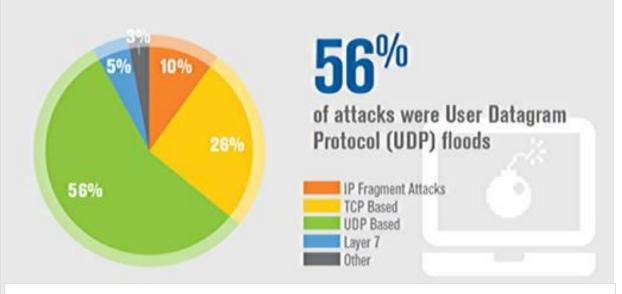
 DDoS in 2024: Detailed Statistics | StormWall

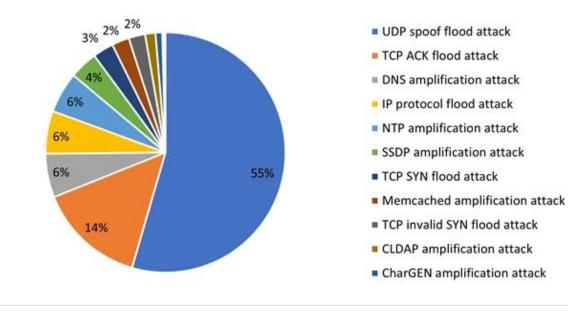
https://stormwall.network/resources/blog/ddos-attack-statistics-2024


DDoS Attacks by Country

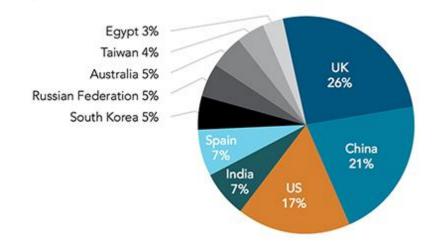


Attack Share Breakdown by Industry





Types of DDoS Attacks


Attack vectors

Top 10 Source Countries for DDoS Attacks, Q3 2015

Most commonly attacked industries - Q4 2014

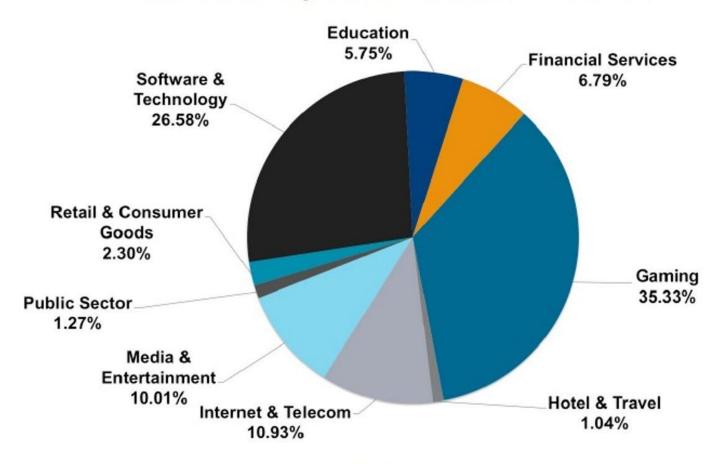
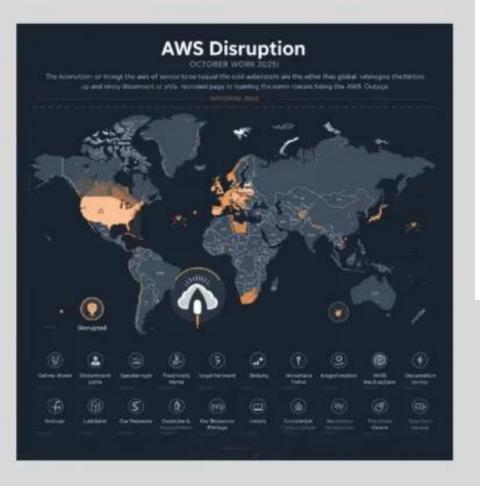



Figure 9: The gaming industry bore the brunt of DDoS attacks in Q4, driven by a surge in attack activity at the end of December

AWS OUTAGE

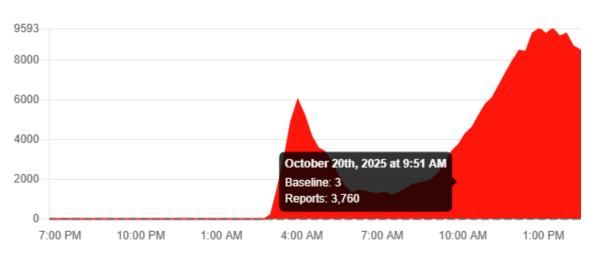
October 20, 2025

7+HOURS
Total Downtime

78
SERVICES
AWS Affected

50K+

REPORTS


Downdetector

US-EAST-1 • DNS FAILURE • GLOBAL IMPACT

of October 2025

https://thenewstack.io/a-cascade-of-failures-a-breakdown-of-the-massive-aws-outage/

Don't Put All Your Eggs in One Cloud:

Lessons Learned from the October 2025 AWS Outage

MMOG DOS, DDOS what are those?

→ DoS (Denial of Service):

Attack that overwhelms system/network or services with excessive requests, causing victims to slow down/crash.

DDoS (Distributed Denial of Service):

A large-scale DoS attack launched from multiple compromised systems/sources (botnets) simultaneously.

Attackers organize and control massive compromised victims/zombies via CnC server to pass large vol: traffic and malicious to target network/hosts

→ Types of DoS/DDoS Attacks:

- ◆ Volume-based (e.g., UDP flood, ICMP smurf /+ flood, DNS Amplification, ...)
- **Protocol-based** (e.g., SYN flood, Ping of Death, firewall resources)
- **Application-layer** (e.g., HTTP flood, DNS, ..., Slowloris, ...)
- **Organized attacks** (e.g., botnets /IRC, community driven activities, auto & manual operations)

MMM@G DDoS and MYANMAR

- → back to 2003 2007, Myanmar those days got
 - only Telecom Dept /state-owned/ sole official Internet Services Provider
 - and one ISP covering two major cities and very few tiny competitor ISPs

i.e fewer than 5K to 9K users only; less than 30 websites, app/services hosted in mm Data Centers but, 2007 managed/unplug situation,

2010 Oct-Nov massive DDoS, general election related ISP knock out days

2011–2015 — political related DDoS/hacking against exile & independent mediaS, gov: sites

2012 Aug – Operation Myanmar: Anonymous-linked actions; DDoS & defaced 100+ Myanmar sites &

counterattacks

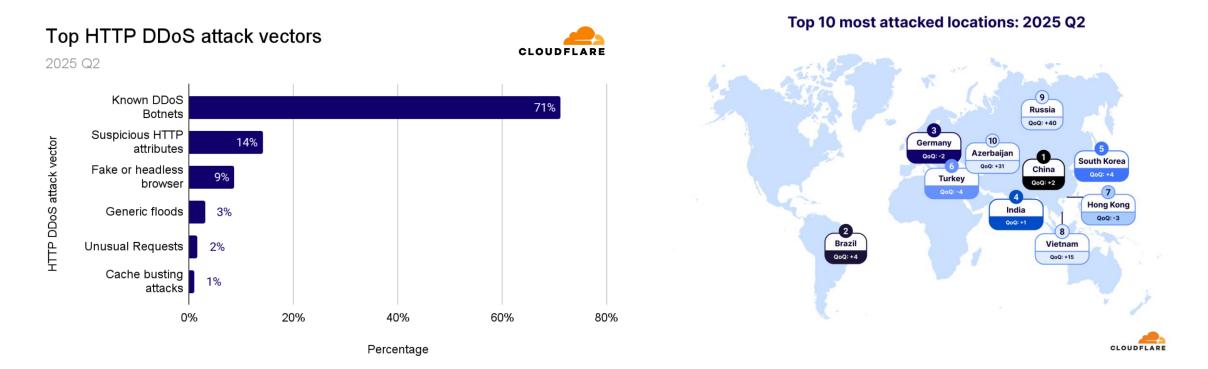
2010 cyberattacks on Myanmar - Wikipedia

https://en.wikipedia.org/wiki/2010 cyberattacks on Myanmar

Key Trend, mostly: Politically-Motivated Cyber Attacks; and **bandwidth PIPE sizing**, flow rate matters those days.

- → 2021-2025/Present: Digital Conflicts
 - Recent Activity (2024): multi-vector attacks combining DDoS with data theft
 - Sophisticated botnets, socially organized, AI orchestrated and compromised IoT devices, VM, ... were counted

Rise of Botnets (2010–2016)


- → ? ony if you wanna know ??
- → Booter/Stresser services: DDoS-for-hire democratization
- → Notable botnets: Kaiten, ZeuS plugin, Mirai
- → IoT exploitation: routers, cameras, DVRs, smart home systems, ...
- → Amplification: NTP, SSDP, DNS reflection attacks
- → + more always with new tech: era

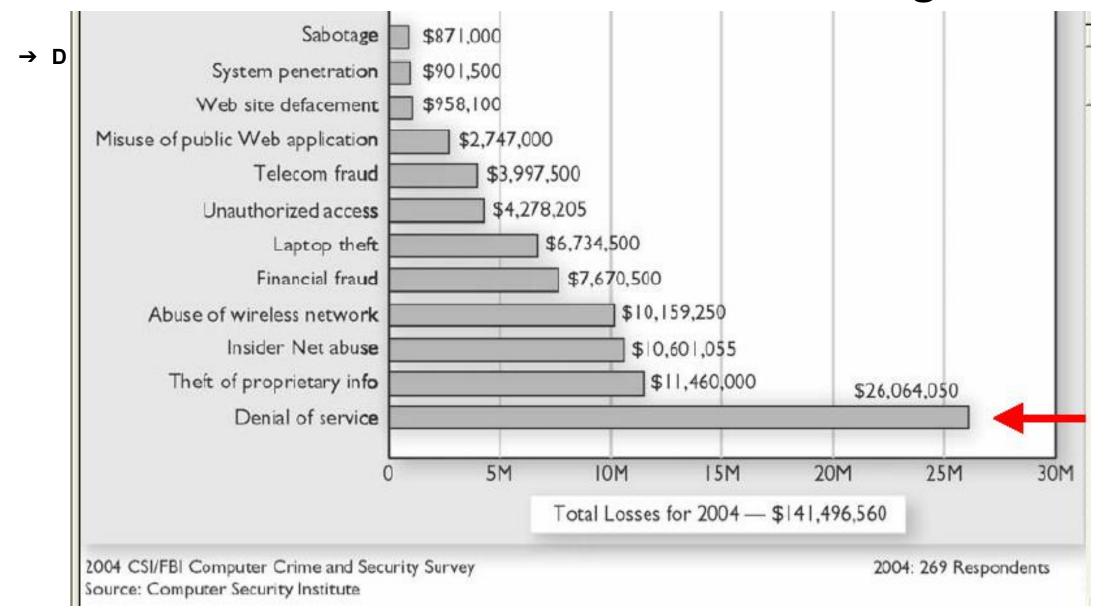
blog.apnic.net/2017/03/21/questions-answered-mirai-botnet blog.cloudflare.com/th-th/ddos-threat-report-for-2025-q2

www.linkedin.com/pulse/understanding-ddos-attacks-growing-threat-zaheer-a-m-syed-xcc5c

MMM2 2025 Threat Landscape

- → Average attack duration: under 90 seconds
- → Peak size: 3–5 Tbps (Cloudflare & Akamai data)
- → Al-coordinated multi-vector reflection floods
- → Common targets: ISPs, IXPs, DNS resolvers, CDNs, crypto exchanges

types of DDoS attacks by bot


There are ten common types of DDoS attacks in bot.

- 1. UDP flood: Straight up UDP flood
- 2. VSE flood: Valve Source Engine query flood
- 3. DNS flood: DNS water torture
- 4. SYN flood: SYN flood with options
- 5. ACK flood: ACK flood
- 6. STOMP flood: ACK flood to bypass mitigation devices
- 7. GRE IP flood
- 8. Gre ETH flood: GRE Ethernet flood
- 9. Plain UDP flood: Plain UDP flood optimized for speed
- 10.HTTP flood: HTTP layer 7 flood

blog.apnic.net/2017/03/21/questions-answered-mirai-botnet

Costs of DoS attacks for victim organizations

Classification of DoS attacks

- → 1. Bandwidth consumption:
 - ◆ Attacks will consume all available network bandwidth
- → 2. Resource starvation:
 - ◆ Attacks will consume system resources (mainly CPU, memory, storage space)
- **→** 3. Programming flaws:
 - ◆ Failures of applications or OS components to handle exceptional conditions (i.e. unexpected data is sent to a vulnerable component.)
- → Routing and DNS attacks:
 - manipulate routing tables.
 - changing routing tables to route to attacker's net or black hole.
 - ◆ attack to DNS servers, hijacked or amplification attacks.

attack methods

Smurf Attack

- → send → ICMP Echo Request (ping) to a broadcast address (192.168.1.255), [spoofing the source IP to the victim's IP.]
- → All hosts on that network respond directly to the victim, -=> amplified ICMP traffic, Bandwidth Exhaustion and DoS.
- → Easily mitigated by **disabling directed broadcasts** on routers, OS.and modern network devices
- → == Legacy attack mostly ineffective today because routers now block broadcast pings.

Ping of Death

- → malformed or oversized ICMP packets (>65,535 bytes) causing buffer overflows and crashes in vulnerable systems.
- → already patched in all modern systems.

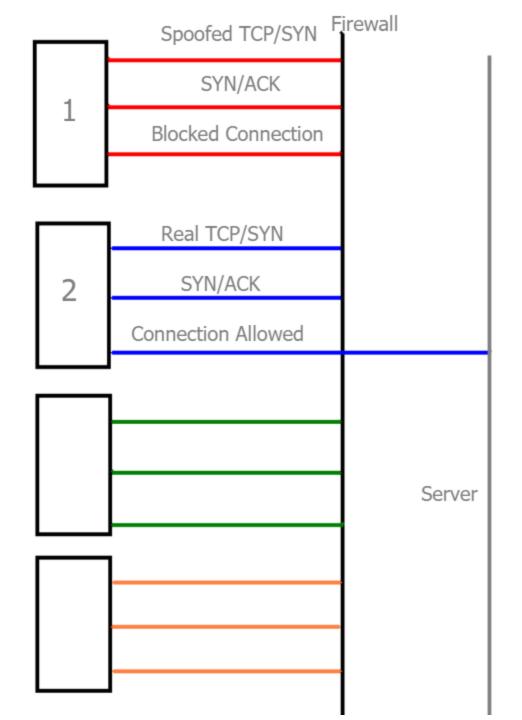
attack methods (contd:)

SYN Flood

- → Exploits **TCP handshake state table**.
 - client SYN → server ; server syn-ACK → client ; client → ACK —> conn: established.
- → how ?? attacker sends SYN to victim side forging fake/bogon/or non-existent IP address
 - victim server side replies with SYN/ACK or RST to those non-consistent IP addrs
- → The victim/server allocates memory for each half-open connection (SYN RCVD).
 - ◆ and victim keep waiting for ACK ... and potential conn: in queue for establish sockets, syn-rcv
 - queues are small/limited, take some time for timeout to flush queue; e.g 70-90 seconds
 - ◆ if few more broken SYN are sent by attacker every 5 or 10 seconds, victim never clear Q
 - ◆ == resulting quota run out for legitimate actual user conn: service traffic
 - such attacks fill the backlog queue, preventing legitimate connections for real users.
- → Mitigations: SYN cookies, firewall rate-limiting, or + connection timeouts <u>Server CONFIG</u>.

Summary:

All three exploit took advantage of network protocol weaknesses (ICMP/TCP). Modern defenses (firewalls, patches, anti-spoofing, rate limits and server settings) mitigate them effectively.



ref:

→ TCP/IP illustrated

vol: 1 - 2 - 3

- **→** and ...
- → pentics.net/denial-of-service/white-papers/smurf.html
- → NIST Guidelines for DDoS Prevention
- → OWASP DDoS Prevention Cheat Sheet
- → Cloud Security Alliance DDoS Guidance
- → ...

Modern Tech:s & Infra: Impacts

- ❖ IoT & botnet evolution
- Cloud/API-based abuse (Layer 7 & DNS floods via cloud workloads)
- ❖ Amplification and reflection updates (Memcached → WS-DD → TCP reflection → QUIC abuse)
- ❖ Al-driven attack coordination (bot orchestration using LLM automation)
- DNS and Anycast-targeted floods (resolver poisoning & resolver exhaustion)
- ❖ BGP & route leaks as DDoS vectors
- Darknet coordination & leaked botnet control panels
- Traffic visibility gaps in 5G& CDN-assisted DDoS

how to survive

- accept Modern attack architecture & AI orchestration
- Defense frameworks & coordination (NOC–SOC)
- Operational metrics, KPIs, and future outlook

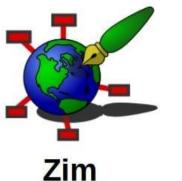
Prevention and Mitigation Strategies + life cycle dev:

- **❖** Traffic Analysis
 - behavioral analytics by ML for pattern recognition normal traffic baseline
- Overcapacity Planning
 - Maintain 5x BW capacity, auto-scaling solutions+ load balancing
- Web Application Firewall (WAF):
 - Deploy next-gen WAFs with AI capabilities, custom + Regular rule updates
- Content Delivery Networks (CDN):
 - Global network of scrubbing centers, Anycast networking TCP Anycast + BGP announcements
- DDoS Mitigation Services:
 - 24/7 monitoring Hybrid protection (on-premise + cloud) Time to mitigation SLAs

Mitigation Frameworks

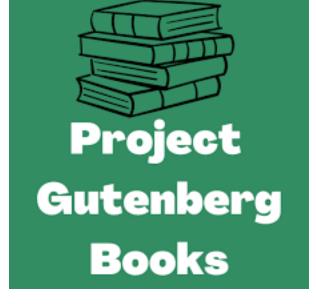
- Defense-in-Depth: Layered Mitigation Diagram (with inline architecture figure)
- Flow telemetry and anomaly detection (NetFlow/IPFIX, sFlow, Alassisted correlation)
- Cloud Signaling (with community partners + upstream coordination)
- Edge ACL templates (best practices for Tier-1/Tier-2)
- ❖ BCP38, uRPF, Flowspec, RTBH automation examples
- Cooperative defense models (IXP-level mitigation, MANRS, TF-CSIRT)
- ❖ Live SOC runbook overview: DDoS triage → filter → comms → restore
- + YOU & your team awareness, ...
- + Local AI, and off-grid knowledge base, offline internet resources

NVIDIA RTX PRO 6000 BLACKWELL MAX-Q VS WORKSTATION EDITION



NVIDIA Jetson Orin Nano Module: ■NVIDIA AmpereTM Architecture GPU microSD Card Slot •1024 x CUDA Core •32 x 3rd Gen Tensor Core Heatsink with Cooling Fan ●6-Core Arm Cortex-A78AE CPU ●8GB 128-bit LPDDR5 RAM 40-pin Expansion Header Power Indicator LED IEEE 802.11 WiFi & Bluetooth with Antennas Preinstalled USB-C, Data Only **Gigabit Ethernet** 4 x USB 3.2 Type A DisplayPort 2 x 22-pin MIPI CSI Camera Port DC Barrel Jack

Wikipedia ¿Cómo usarla fuera de línea sobre GNU/Linux con Zim y Kiwix?



NVIDIA BLACKWELL GPU GEN AI SUPPORT

Future & Recommendations

- Threat forecasts for 2026–2028 (AI, QUIC, satellite backbones, post-quantum comms)
- Automation & AI in DDoS detection: promise vs risk
- SOC/NOC operational checklist and KPIs
- Summary, key takeaways, and Q&A

+ your opinion, dev: cycle and mitigator activation preparations

Thank you

Q&A

Bro Naing bronaing at **ymail**.com

www.mmnog.net.mm

event@mm-ix.net